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Abstract—Pneumoconiosis is an incurable respiratory 
disease caused by long-term inhalation of respirable dust. Due 
to small pneumoconiosis incidence and restrictions on sharing 
of patient data, the number of available pneumoconiosis X-rays 
is insufficient, which introduces significant challenges for 
training deep learning models. In this paper, we use both real 
and synthetic pneumoconiosis radiographs to train a cascaded 
machine learning framework for the automated detection of 
pneumoconiosis, including a machine learning based pixel 
classifier for lung field segmentation, and Cycle-Consistent 
Adversarial Networks (CycleGAN) for generating abundant 
lung field images for training, and a Convolutional Neural 
Network (CNN) based image classier. Experiments are 
conducted to compare the classification results from several 
state-of-the-art machine learning models and ours. Our 
proposed model outperforms the others and achieves an overall 
classification accuracy of 90.24%, a specificity of 88.46% and an 
excellent sensitivity of 93.33% for detecting pneumoconiosis. 

Keywords—pneumoconiosis, deep learning, computer-aided 
diagnosis, black lung 

I. INTRODUCTION 
Pneumoconiosis is an incurable respiratory illness caused 

by long-term inhalation of respirable dust. About 25,000 
people died of pneumoconiosis globally in 2013 [1]. It is 
reported that pneumoconiosis kills about 6,000 coal workers 
in China each year [2]; and in the US, it caused 69,377 deaths 
during 1970-2004 [3]. In Queensland, Australia, about 165 
cases of mine dust lung diseases have been diagnosed since 
1984 [4]. With the recent re-emergence of pneumoconiosis 
[5], more cases are feared to have been missed [6]. Poor dust 

control and patchy medical screening are to blame for the 
resurgence of this potentially deadly disease in developed 
countries [5, 6]. 

For pneumoconiosis screening, chest radiographs are 
acceptable, widely available and relatively inexpensive. The 
current practice in Australia is that coal miners are required to 
undergo pre-employment chest X-rays, followed by routine 
X-ray screenings during the employment, and each X-ray 
requires two B-readers to review. B-readers are trained to use 
the International Labour Organization (ILO) Classification 
protocol [7]. However, the insensitivity of chest radiographs 
for detection of early or moderate pneumoconiosis limits their 
efficacy in screening. This also leads to low sensitivity and 
specificity of chest X-rays when read by a radiologist who is 
qualified as a B-reader, especially for the detection of 
pneumoconiosis at an early stage of the disease. Inter- and 
intra-reader variability in chest radiography has been 
acknowledged ever since chest radiography was first used to 
identify and classify pneumoconiosis. Another limiting factor 
is that there are only 102 B-readers outside the United States 
[8]. This indicates that B-readers are in very short supply, and 
in some cases, a large backlog of X-rays could occur. To date, 
there has been a lack of systematic, automated, and objective 
systems for detecting the presence and assessing the 
progression of pneumoconiosis for individual coal miners 
other than by expert radiologists. 

In this paper, we present our latest research results from a 
project to address the above problems by developing 
Computer-Aided Diagnosis (CAD) tools for automated 
pneumoconiosis detection using chest X-rays. In collaboration  
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Fig. 1. The overall architecture of the proposed cascade learning model 

 
with Coal Services Health (CSH), St Vincent’s Hospital at 
Sydney, and Wesley Medical Imaging at Queensland, we 
developed cascaded machine learning algorithms for the 
automated pneumoconiosis detection. The rest of the paper is 
organised as follows: In Section II, we discuss the related 
works and the challenges in developing deep learning models 
for automated pneumoconiosis detection. In Section III, we 
introduce our methods applied to the automated 
pneumoconiosis detection. In Section IV, we present our 
experimental results conducted on X-rays captured from coal 
miners. This is followed by conclusions and future work in 
Section V. 

II. RELATED WORK 
   Past methods for automated detection of 

pneumoconiosis include using classical image analysis to 
extract a set of handcrafted features from each lung field and 
zone. The features were extracted using based pixel 
intensities, co-occurrence matrix and frequency domain. A 
subset of these features were selected as input to train Support 
Vector Machine (SVM) classifiers to predict whether or not a 
region of interest in an X-ray contained any abnormalities [9]. 
This requires substantial work to extract and select the 
handcrafted features to build the SVM. In the last five years, 
there have been lots of successful applications of the deep 
learning methods in medical imaging domain, such as 
CheXNet [10] for the detection of pneumonia from chest X-
rays. The core of CheXNet is a 121-layer dense convolutional 
neural network (DenseNet) [11] that uses a chest X-ray image 
as input and generates the probability of pneumonia along 
with a heat map localizing the areas of the image most 
indicative of pneumonia. The CheXNet was trained on 
ChestX-ray14 image database [12] with over 100,000 X-ray 
images of 14 different thoracic diseases acquired from 30,805 
unique patients. When training CheXNet, all pneumonia X-
ray images from this database were labelled as positives and 

the rest of the images were deemed as negatives. Apart from 
the large training dataset, 420 chest X-rays were used for 
testing. The testing results showed that the CheXNet 
outperformed the average radiologist on pneumonia detection. 
Pasa et al. proposed a simple convolutional neural network 
optimised for fast tuberculosis screening using chest X-rays 
[13]. Unlike most deep learning networks applied to 
tuberculosis diagnosis, their network is faster and more 
efficient than previous models but preserves their accuracy. 
To provide better insight in different deep learning models for 
X-ray image analysis, ResNets with multiple depths were 
investigated using transfer learning with and without fine-
tuning as well as the training of the ResNets from scratch [14]. 
The best overall results were reported for the model 
exclusively trained with Chest X-rays incorporating non-
image data such as view position, patient age and gender. 
Bassi et al. presented a deep convolutional neural network-
based classifier for COVID-19 detection using chest X-rays. 
The classifier is based on DenseNet and can be used to classify 
an X-ray into one of the three classes: COVID-19, viral 
pneumonia and normal. The deep CNN was pretrained on 
ImageNet and then trained on ChestX-ray14 dataset before it 
was trained on COVID-19 X-rays [15]. Experimental results 
show that deep learning-based Chest X-ray analysis can be a 
cheap and accurate auxiliary method for COVID-19 
diagnosis. Ozturk et al. presented a model using DarkNet as a 
classifier for the YOLO object detection system and applied 
the model to the detection of COVID-19. Their experiments 
show a classification accuracy of 98.08% for binary classes 
and 87.02% for multi-class cases [16].    

The above studies are based on abundant training samples. 
However, due to the small incidence of some diseases such as 
the pneumoconiosis and the restrictions on sharing of patient 
data, the number of available images may not be sufficient, 
which leads to imbalanced datasets and introduces significant 
challenges for training deep learning models. Therefore, 



detecting pneumoconiosis on chest X-rays remains a 
challenging task that relies on the availability of expert 
radiologists. 

In this study, we address the above problems by 
developing a cascaded machine learning (ML) framework for 
automated pneumoconiosis detection using both real chest X-
rays and synthetic radiographs generated by CycleGAN 
[17]. To improve the sensitivity and specificity, lung fields are 
segmented from real chest X-rays using pixel classification 
and then used to generate synthetic lungs. We also evaluate 
several popular machine learning models for comparison with 
our model, including Autoencoder [18] + SVM, Multi-Layer 
Perceptron (MLP) Learning using KAZE Features [19], and 
transfer learning based on CheXNet. Experimental results 
show that our proposed model outperforms others and we 
achieve overall classification accuracy of 90.24%, a 
specificity of 88.46% and a sensitivity of 93.33% for detecting 
pneumoconiosis. 

III. METHODS 
Deep learning has become very popular and has been used 

practically in many industry domains. However, one common 
barrier for deep learning to solve real-world problems remains 
the amount of labelled training data. In practice, imbalanced 
datasets often come up with majority of training data from a 
single class and limited number of training samples from 
another class. This can lead to biased prediction in favor of the 
majority class. For the pneumoconiosis detection, we have 
abundant training data for normal X-rays, however, the 
number of X-rays with signs of pneumoconiosis is limited. To 
address this issue, we propose a cascaded learning architecture 
for the automated pneumoconiosis detection. Fig. 1 shows the 
architecture which is further detailed in the following sections. 

A. Lung Field Segmentation 
Lung field segmentation is a pre-requisite for most 

computer-aided evaluation systems for chest radiographs. We 
used a pixel-based machine learning algorithm that employs 
Pixel Classification (PC) to distinguish between lung and non-
lung areas in a radiograph [20, 21]. PC yielded around 95% 
overlap score with the Japanese Society of Radiological 
Technology (JSRT) gold standard lung masks [22]. We made 
some necessary modifications to the algorithm to improve its 
performance so that it worked on both digital and digitized 
radiographs. 

In the training stage an image is resized to a working 
resolution and subsampled. For each sample in a subsampled 
image a set of features are extracted. The features are 
computed from a neighbourhood centred on this sample, and 
are devised to characterize local image structures using the 
output of Gaussian derivative filters at multiple scales. In 
addition, X and Y coordinates of each sample are included in 
the feature set. Each such feature set has a corresponding label, 
0 – if a pixel belongs to image background, 1 – for a pixel in 
the right lung, and 2 – for a pixel in the left lung. Next, a K-
Nearest Neighbour (k-NN) classifier is trained with the feature 
sets and the corresponding labels, learning how to map pixel 
features to particular class labels. In the end of the training 
stage a classifier can compute a probability that a new input 
pixel belongs to either image background, right lung or left 
lung.  

In the testing stage, a new unknown image is resized to the 
working resolution, then, the same feature set is computed for 

each pixel in the image. A trained k-NN classifier takes each 
pixel’s feature set as an input and computes a probability for 
that pixel to belong to each of the three classes, p0, p1 and p2. 
This allows us to create a lung probability map P. It has the 
same size as the test image, and its pixel values, p(x, y), define 
a probability that a pixel belongs to one of the lung fields: 

p(x, y) = p1(x, y) + p2(x, y)  (1) 

The probability map can be turned into a lung mask by 
thresholding it at a probability of 0.5, meaning that every pixel 
that received a probability greater than 0.5 is assumed to be a 
lung pixel. The two largest connected objects in the resulting 
binary mask are labelled as 1 (the right lung) and 2 (the left 
lung), and holes in the masks are filled. To prepare the image 
data suitable to feed into our CNN image classifier, a post 
processing function is employed to automatically exclude the 
black area outside the lung fields. Fig. 2 shows a chest X-ray, 
its segmented lung fields and automatically cropped lung field 
images. 

   
Fig. 2. A chest X-ray with parenchymal opacities of pneumoconiosis (left), 
its lung fields generated by the Pixel Classification (middle) and its cropped 

lung field image (right). 

B. CycleGAN Image Generator 
CycleGAN was proposed to capture special characteristics 

of one image collection and translate the characteristics into 
the other image collection [17]. It can be used to do image-to-
image translation and leverage the imbalanced training 
datasets. In this work, we train a CycleGAN using selected 
representative images, including 56 normal and 56 
pneumoconiosis lung fields to generate 1,000 normal and 
pneumoconiosis lung field images, respectively, which 
include multiple synthetic images generated from a single real 
X-ray image. Experiments show that overall good accuracy is 
achieved when using the synthetic images generated by 
CycleGAN trained for 30 epochs. 

  
Fig. 3. An original lung field X-ray image (left) and a CycleGAN generated 

X-ray image (right) 

C. CNN Based Image Classifier 
The input of our CNN based image classifier are images 

of 256 x 256 in dimension. The classifier is trained to classify 
an image into the category of either normal or 
pneumoconiosis. 

The CNN model shown in Fig. 1 is composed of 15 neural 
network layers. It includes 8 convolutional layers to extract 
feature maps. We start with 32 filters to extract low-level 



features, and double the number of filters to 64, then 128 and 
256 to detect high-level detailed features. The kernel size used 
for these filters is 3 x 3 and stride is 1 x 1. The activation 
function used is ReLU. Four pooling layers are employed to 
down-sample the feature maps and provide spatial variance. 
There are also three dense layers, where every input node of 
each dense layer is connected with every node of its next layer. 
To avoid overfitting on the proposed model, two dropout 
layers are used - one between the first and second dense layers, 
and the other one between the second and third dense layers. 
The last layer of the classifier uses sigmoid activation function 
and outputs probability scores for each of the two classes – 
Normal and Pneumoconiosis. 

For the classifier, its input is a chest X-ray downsized to 
256 x 256 pixels, and the output is a binary label 𝑦𝑦 ∈ {0, 1} 
representing the absence or presence of pneumoconiosis, 
respectively. During the training, we use binary cross-entropy 
as a loss function, and RMSprop optimizer. We optimize the 
binary cross entropy loss: 

𝐿𝐿(𝑦𝑦�,𝑦𝑦) =  − 1
𝑁𝑁
∑ [𝑦𝑦𝑖𝑖 log(𝑦𝑦𝚤𝚤�) + (1 − 𝑦𝑦𝑖𝑖)log (1 − 𝑦𝑦𝚤𝚤�)]𝑁𝑁
𝑖𝑖=1     (2) 

 
where 𝐿𝐿(𝑦𝑦�,𝑦𝑦) is the binary cross loss, 𝑦𝑦𝑖𝑖  is the true value (0 
or 1) and 𝑦𝑦𝚤𝚤�  is the predicted probability of the label 𝑦𝑦𝑖𝑖 , and N 
is the number of training samples. 

D. Image Augmentation 
All images including training, validation and testing 

samples are normalized so that their pixel values are between 
0 and 1. For the training images, their mean is set to 0 by 
subtracting the mean value of the training dataset from each 
training image. Each training image is also divided by the 
standard deviation of the training dataset. To increase the 
diversity of the training dataset, the training images are 
randomly zoomed with a range of 0.9 to 1.1, and flipped 
horizontally, and their pixel intensities are sheared with an 
angle of 0.01 degrees. Apart from scaling the intensities to the 
range of [0, 1], no other augmentation was done for the 
validation and testing images. 

IV. EXPERIMENTS 
In this section, we present our experimental results from 

the proposed model and compare the results from various 
popular machine learning models evaluated. 

A. Datasets 
We collaborated with various organizations to collect 

image datasets and associated diagnostic labels used in this 
study. We also use publicly available teaching chest X-ray 
dataset downloaded from The National Institute for 
Occupational Safety and Health (NIOSH) website [23] and 
ILO Standard Radiographs to develop parts of the system. All 
radiographs used in this study are posterior-anterior (PA) 
radiographs, some of which are fully digital, while some are 
digitized films. All X-ray images were captured from mine 
workers. 

Among the image datasets we collected, there are an 
abundance of normal X-rays, however, only 71 
pneumoconiosis images. We set aside 56 pneumoconiosis 
images (80%) for training and 15 images (20%) for testing. To 
have balanced classes, we set aside 56 normal images for 
training and 26 for testing from ILO, NIOSH and Wesley 
Medical Imaging datasets. The 502 normal images from Coal 

Services Health are used for training Autoencoder for feature 
extraction. 

B. Hybrid Model of Autoencoder and SVM 
Autoencoders [18] are a specific type of feedforward 

neural networks where the input is the same as the output. 
They compress the input into a lower-dimensional code and 
then reconstruct the output from this code. The Autoencoder 
can be used as a feature extractor to learn a representation of 
image data. In this work we used 502 normal X-ray images 
provided by Coal Services Health to train an Autoencoder for 
feature extraction. The trained Autoencoder was used to 
extract features from 56 normal and 56 pneumoconiosis 
images. The extracted features were employed to train an 
SVM. The best classification results on the test data are shown 
in Table I. 

C. CheXNet Based Transfer Learning 
CheXNet is a deep learning algorithm developed by 

Stanford Machine Learning Group to detect pneumonia from 
chest X-rays at a level exceeding practicing radiologists [10]. 
In this work, we used a pre-trained CheXNet model as a 
starting point and retrained it using the 1,056 normal and 
1,056 pneumoconiosis images, respectively. The 1,056 
training images for each class included 1,000 generated by 
CycleGAN, as explained in Section III.B, and 56 real X-rays. 
The classification results on the test data are demonstrated in 
Table I. 

D. Multi-Layer Perceptron (MLP) Learning Using KAZE 
Features 
To compare the performance of the proposed model with 

traditional machine learning approach using handcrafted 
features, we used KAZE algorithm [19] to extract local 
features for training a MLP model. The algorithm is a novel 
multiscale 2D feature detection and description method in 
nonlinear scale spaces by means of nonlinear diffusion 
filtering. The evaluation in the paper shows the KAZE 
outperforms the previous state-of-the-art methods in feature 
detection and description. Because the number of descriptors 
for different images varies, we turn the descriptors into a 
single histogram of visual words using the Bag of Words 
strategy [24]. The histogram is then used as the input to our 
MLP neural network. 

E. The Proposed Cascaded Learning Framework 
To evaluate our proposed model, we used the same 

training and test datasets as used for retraining the pre-trained 
CheXNet above. The test dataset includes 41 images (26 
normal and 15 pneumoconiosis images), and the training 
dataset has 1,056 normal and 1,056 pneumoconiosis images, 
including 1,000 images generated by CycleGAN and 56 real 
X-rays for each class. For each class, we split the 1,056 images 
into two datasets with 792 for training (75%), and 264 for 
validation. 

1) Training of the Image Classifier: For the training, we 
used the following hyper parameters: Learning Rate = 0.0001, 
Epochs = 20, Batch Size = 32. The training was conducted on 
a GPU workstation with an Intel 18-Core i9 2.6 GHz CPU, 
128GB RAM, and 4 Titan Xp GPUs. The training for 20 
epochs took only 6 minutes 52 seconds. During the training, 
the log-loss for the training images was between 0.058 and 
0.691, and 0.058 at the end of the training; for the validation 
images it was between 0.029 and 0.691, and 0.052 at the end 
of the training. The classification accuracy for the training data 



was between 53.5% and 98.3%, and 98.3% at the end of the 
training; for the validation data it was between 50.2% and 
99.6%, and 99.4% at the end of the training. The following 
figure shows the log-loss and accuracy during the training. 

2) Testing of the Image Classifier: Only one out of 15 
pneumoconiosis X-ray images was misclassified and only 3 
out of 26 normal X-rays were misclassified. The overall 
classification accuracy is 90.24%, the sensitivity is 93.33% 
and the specificity is 88.46%. 

F. Comparison of the Classification Results 
The table below compares the results produced by our 

model and other machine learning algorithms. It clearly shows 
the proposed model outperforms the others. 

TABLE I.  COMPARISON OF PNEUMOCONIOSIS DETECTION RESULTS 
FROM DIFFERENT ML MODELS 

Method Sensitivity Specificity Accuracy 
MLP + KAZE 66.67% 75% 71.11% 

Autoencoder + SVM 73.33% 73.08% 73.17% 
CheXNet Based Transfer 

Learning 73.33% 80.77% 78.05% 

Proposed Cascaded 
Learning 93.33% 88.46% 90.24% 

 

V. CONCLUSIONS AND FUTURE WORK 
Pneumoconiosis is deadly and there is no cure for this 

disease. Early detection of pneumoconiosis through routine 
medical screening is critical in preventing complications 
including death. Until now, there has been a lack of 
systematic, automated, and objective systems for detecting the 
presence and assessing the progression of pneumoconiosis for 
individual coal miners other than by expert radiologists.  

We develop a cascaded machine learning framework 
which automatically detects pneumoconiosis from chest X-
rays. The proposed method outperforms others and achieves a 
sensitivity of 93.33%, a specificity of 88.46% and an overall 
accuracy of 90.24%. We hope this technology can be used for 
the pre-screening of pneumoconiosis, and to address the issues 
of variability in identifying pneumoconiosis, and the shortage 
of B-readers. The cascaded machine learning framework can 
potentially be used in other medical imaging applications 
when training datasets are imbalanced or lack diversity. 

Future work will encompass a pilot study where our 
method can be trialled in a clinical setting alongside human 
readers. 
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