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Abstract—Current smart glasses such as HoloLens excel at
positioning within the physical environment, however object and
task recognition are still relatively primitive. We aim to expand
the available benefits of MR/AR systems by using semantic
object recognition and 3D reconstruction. Particularly in this
preliminary study, we successfully use a HoloLens to build 3D
maps, recognise and count objects in a working environment. This
is achieved by offloading these computationally expensive tasks
to a remote GPU server. To further achieve realtime feedback
and parallelise tasks, object detection is performed on 2D images
and mapped to 3D reconstructed space. Fusion of multiple views
of 2D detection is additionally performed to refine 3D object
bounding boxes and separate nearby objects.

Index Terms—HoloLens, Mixed Reality, 3D Reconstruction,
Object Detection

I. INTRODUCTION

Mixed and Augmented Reality can greatly extend a user
capabilities and experiences by bringing digital data directly
into the physical world where and when it is most needed.
Current systems excel at positioning within the physical envi-
ronment, however object and task recognition is still relatively
primitive. With an additional semantic understanding of the
wearer’s physical context, intelligent digital agents can assist
workers in warehouses, factories, greenhouses, etc. or guide
consumers through completion of physical tasks.

Several studies have been done in this area. YOLOv2 deep
network [1], [2] was applied to HoloLens in client-server
configuration to perform 2D object detection from color video
stream. Realtime 3D object detection and pose estimation [3]
were applied to a RealSense camera attached to a HoloLens
and provides pose to the Hololens for 3D visualisation.
Hololens was also used in [5] to label 3D point cloud to train
a deep network to locate robot in 3D environment.

In this work, we aim to build a real-time application using
a HoloLens to scan the indoor environments and then building
up 3D interactive scans. Particularly, our work focuses on
3D scene reconstruction of a small room from the recorded
HoloLens v1’s depth and color information. We also conduct
3D object detection and tracking for objects in an indoor
environment.

II. 3D SCENE RECONSTRUCTION AND OBJECT
DETECTION FOR HOLOLENS

A. 3D Scene Reconstruction

A HoloLens v1 captures depth and infrared reflectivity by its
time-of-flight (ToF) camera and color by its RGB camera. For
ToF depth capture, HoloLens provides long-throw depth and
short throw depth. Long throw depth captures objects between
1 and 4 meters at 1 FPS while short throw captures between
0.02 and 3 meters at 15 FPS. In the following section, we use
the long throw depth unless otherwise stated.

1) Point Cloud Reconstruction: Apart from the depth es-
timation of each frame, HoloLens also provides transforma-
tion matrices to calculate camera poses while recording. The
provided transformation matrices for each camera include
frame-to-origin (of HoloLens’ world coordinate system) ma-
trix Mf2o, camera-view matrix Mcvt (extrinsics) and camera-
projection matrix Mcpt (intrinsics & extrinsics). The point
cloud in world coordinate system Pw is obtained from 3D
point transformation from depth coordinate to world coordi-
nate:
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f2o(M

d
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where Pw and P d is the homogeneous coordinates of 3D
points in the world and depth-camera coordinate systems,
Md

f2o and Md
cvt are the matrices for depth camera.

2) Point Cloud Colorization: Due to the limitation of gray
scale images from HoloLens reflectivity data, the reconstructed
point cloud lacks color information. HoloLens also provides
RGB images of smaller field of view, therefore we can colorize
the point cloud with relative poses between depth camera and
RGB camera. The transformation from depth coordinate to
color frame coordinate is:
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where Pc is the homogeneous coordinates in the color image
to obtain the color for P d; M c

f2o and M c
cvt are the matrices

for color camera.
Considering that the appearance in different photos slightly

changes from different angles, we average RGB value of the
3D points over multiple color views. Due to smaller field of



Fig. 1. Different perspectives of the point cloud of TV room. Blank areas
are due to lack of color views and white areas due to incomplete coverage.

view of color frames, not all 3D points have color information
as shown in Figure 1.

Algorithm 1 Update 3D bounding boxes with IoU
Input: Point clouds {Pi|i = 1, 2, · · · , N}
Output: Updated 3D bounding boxes {Bj |j = 1, 2, · · · ,K}

1: Initialise first Point cloud P = P1

2: for i = 2, 3, · · · , N do
3: Compute IoU3D between P and Pi

4: if IoU3D > threshold then
5: Fuse two boxes P ← P + Pi

6: Remove outliers too far from the median of P
7: else
8: Record 3D bounding box Bj from P
9: Initialise P ← Pi

10: end if
11: end for

B. Object Detection and Tracking

In parallel to the 3D point cloud reconstruction, object
detection is performed on reflectivity and color frames. 2D
bounding boxes can be obtained from detected objects and
matched with their responding point cloud coordinates in 3D
environment. However, the 2D bounding boxes contain pixels
of the object, and some background pixels as well. As a
result, we use segmented masks to reduce point clouds from
background and fuse the 3D bounding boxes of the point
clouds from different views of the same object. Here we apply
Mask R-CNN [4] on individual color frames to obtain object
masks, and then find their corresponding 3D point cloud.

Another challenge is how to define the border of different
objects of the same category and locate closely. Our solution
is to fuse 3D bounding boxes through computing the IoU of
two neighbouring boxes. As an extension of 2D IoU, here
we calculate 3D IoU as IoU3D = V1

⋂
V2

V1+V 2−V1
⋂

V2
. If the 3D

IoU is larger than a threshold, the two detected point clouds
should belong to the same object and be concatenated. We
update the median 3D point and its l0 distances to other 3D
point. To remove points in the background, we select and drop
a percentage number of points of the largest distance. The
procedure is demonstrated in Algorithm 1.

Fig. 2. Two corners of our room model, each contains some masked chairs
with refined bounding boxes.

III. EXPERIMENTS AND RESULTS

We choose a TV room and record a 2-minute video using
HoloLens v1. Point clouds are reconstructed and colorized
using laptop with 2.2 GHz 6-Core Intel Core i7 CPU. We
record the video using a HoloLensForCV [6]. Object detection
and tracking are performed using Mask RCNN [4] on the Tesla
P100 GPU. Figure 1 shows the 3D reconstruction of TV room
from four perspectives. Figure 2 demonstrated object detection
and bounding box refinement. It shows that the proposed
approach successfully tracks individual chairs and extract good
3D bounding boxes from multiple 2D segmentations.

IV. CONCLUSION

We have presented a workflow from recording data to 3D
reconstruction to object detection using the HoloLens. We
have demonstrated that 2D object segmentation can be used
to obtain 3D segmentation and bounding boxes to allow for
realtime object detection and counting. Fusion of 3D bounding
boxes improves the separation between nearby objects and
refine the bounding box sizes. Future works include feedback
loop for realtime object detection visualisation, and question
and answer capability to query information of the environment.
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[5] Linh Kästner, Vlad Catalin Frasineanu, and Jens Lambrecht. A 3d-
deep-learning-based augmented reality calibration method for robotic
environments using depth sensor data. arXiv preprint arXiv:1912.12101,
2019.

[6] Microsoft. Hololensforcv. https://github.com/microsoft/HoloLensForCV,
August 2020.


